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Two-dimensional (2D) materials have been recognized as
a  type  of  potential  channel  material  to  replace  silicon  in  fu-
ture field-effect transistors (FETs) by the International Techno-
logy Roadmap for Semiconductors (ITRS) and its succesor the
International Roadmap for Devices and Systems (IRDS)[1−4]. Sub-
stantial first principle quantum transport simulations have pre-
dicted  that  many  2D  transistors,  including  those  with  MoS2,
WSe2,  phosphorene,  and  Bi2O2Se  channels,  own  excellent
device  performance  and  are  able  to  extend  Moore’s  law
down to the sub-10 nm scale[4].  However,  the actual  2D tran-
sistors  suffer  from  poor  contact  and  dielectric[4].  As  a  result,
the  maximum  on-state  currents  ( )  or  saturation  currents
(Isat)  of  the  fabricated 2D transistors  are  even generally  lower
than the on-state current (Ion) (>1200 μA/μm) of the most ad-
vanced silicon transistors. As we know, the on-state current is
one  of  the  most  critical  figure  of  merit  of  a  FET  required  by
ITRS  and  IRDS,  and  a  large  on-state  current  implies  a  fast
switching speed.

Imax
on

Due to lack of reliable and sustainable doping technique,
2D  semiconductors  often  need  to  contact  metal  electrods
directly.  Schottky  barrier  is  often  generated  at  the  metal–
semiconductor  interface,  resulting  a  poor  contact.  Schottky
barrier  originates  from  the  the  Fermi  level  pinng  (FLP),  whi-
ch  is  caused  by  metal-induced  gap  states  (MIGS)[3].  Because
the  Fermi  level  of  semimetal  Bi  aligns  with  the  conduction
of  the  monolayer  (ML)  MoS2,  the  MIGS  and  thus  FLP  are
greatly  depressioned  at  the  interface  between  Bi  and  ML
MoS2

[5].  With  semimetal  Bi  as  electrodes,  Ohmic  contact  with
ultra-low  contact  resistance  of  123  Ω·μm  and  an  up  to
1135 μA/μm  are  obtained  in  a  ML  MoS2 transistor  by  Kong
et al.  from MIT in 2021[5].  Compared with the ML MoS2,  bilay-
er  (BL)  MoS2 has  a  narrower  bandgap  and  higher  electron
density,  which  is  beneficial  for  the  on-state  current  enhance-
ment. Recently, Wang’s group from Najing University has fab-
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ricated  the  BL  MoS2 field-effect  transistors  with  Bi  as  elec-
trodes,  and the mobility has improved by 37.9% and reached
122.6 cm2/(V·s), and  is further increased to 1270 μA/μm[6].
The  values  of  these  MoS2 transistors  are  consistent  with
that  (~1200 μA/μm)  predicted  based  on  the  ab  initio
quantum  transport  simulation  for  the  ML  MoS2 transistor  by
Lu et al. from Peking University[7].
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Very recently,  a  record  of  1720 μA/μm among all  the
current  2D-material  transistors  (Fig.  1)  accompanied  by  a
small  on-state  resistance  of  500  Ω·μm  is  achieved  by  Duan’s
group from Hunan Univeristy in the 20 nm-channel-length BL
WSe2 transistor  with van der  Waals  (vdW) VSe2 contact[8]. 
is 1360 μA/μm under Vds = 0.8 V, which is also close to a predic-
tion (~ 1500 μA/μm) for the ML WSe2 MOSFET at Vds = 0.72 V
based  on  the  ab  initio  quantum  transport  simulation  by  Lu
et  al.[9].  Such  a  high  performance  can  be  ascribed  to  depres-
sion of the FLP in weak vdW contact[3].
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Although such  values in the 2D MoS2 and WSe2 tran-
sistors are comparable with or even exceeds Ion in the Si tran-
sistors,  it  does not  imply  that  the 2D transistors  have outper-
formed  the  Si  transistors  as  the  carbon  nanotube  transistors
do,  reported by Peng et al.[10].  The reason lies in the fact  that
the  high  values  of  the  best  2D  WSe2 and  MoS2 transist-
ors  are  generated  in  a  rather  high  gate  swing  (20–60  V)[6, 8].
However, the Si FETs required in ITRS or IRDS operate under a
small  supply  voltage Vdd (about  0.7  V)[11, 12],  and Ion is  meas-
ured under a gate swing no more than this Vdd.  To be specif-
ic, Ion is  obtained under a bias Vds and gate swing of Vg(on) –
Vg(off) defined by Vdd (Namely, Vds = Vg(on) – Vg(off) = Vdd). Giv-
en  the  same  criterion,  not  only Ion but  also  the  closely  re-
lated  maximum  transconductance gm of  the  best  2D  WSe2

and  MoS2 transistors  remain  much  smaller  than  those  of  the
Si  transistors  under  the  similar Vdd [0.15–5  (MoS2 and  WSe2)
vs  1000 μA/μm  (Si)  in Ion and  0.13–20  (MoS2 and  WSe2)  vs
3000 μS/μm (Si) in gm][6, 8, 13].

The  improvement  method  is  to  use  the  high-κ dielectric
with  ultrathin  thickness  and  obtain  an  ultrasmall  equivalent
oxide  thickness  (EOT)[1].  Duan et  al.  have  tried  to  reduce
the  EOT  of  the  bilayer  WSe2 FETs  by  using  the  3-nm  Al2O3/
6-nm  HfO2 dielectric  layer.  The  corresponding  gate  swing  is
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over  1  mA/μm[8],  and gm is  significantly  improved  from  0.13
to  150 μS/μm.  Very  recently,  Peng et  al.  from  Peking  Uni-
versity  have  successfully  fabricated  the  sub-0.5-nm  EOT
(2.3-nm β-Bi2SeO5)  in  the  2D  Bi2O2Se  FETs,  realizing  ultralow
leakage  current[14].  This  achievement  overcomes  the  chal-
lenges  in  depositing  the  ultra-thin  gate  dielectric  on  the
dangling-bond-free  2D  semiconductors,  making  it  promising
for the development of 2D transistors with high Ion and gm.
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Fig. 1. (Color online) Benchmarking sub-100-nm bilayer WSe2 transistors (red ball) against the (a)  for 2D semiconductor transistors (b-P, b-As,
b-AsP, MoS2,  MoS2-0.7 nm, WSe2-0.7 nm, WS2,  WS2-0.7 nm, MoTe2,  GeAs, InSe, SnSe, ReS2,  PtSe2,  ZrSe2,  HfSe2)  and Ion of 2021 silicon transistor
(black ball)  reported in  ITRS,  and (b)  the  (lowest  on-state  resistance)  with those reported in  the literature[8].  Reproduced with permission
from Springer Nature, copyright 2022.
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